The Role of Existing Hydropower in Decarbonizing the U.S. Electric Sector

Christopher Roney, EPRI

The Role of Existing Hydropower in Decarbonizing the U.S. Electric Sector

Christopher Roney, Qianru Zhu, Chloe Fauvel, Francisco Kuljevan, P.E. & David Young

March 15, 2024

Note: Results are preliminary and for discussion only. No findings should be considered final or communicated widely and may change

2

 in
 X
 T

 www.epri.com
 © 2024 Electric Power Research Institute, Inc. All rights reserved

Motivation: Progress Toward U.S. GHG Targets Led by Electric Sector

Figure 1. Historical greenhouse gas emissions trends by sector relative to 2030 U.S. target. Values through 2021 come from U.S. EPA's "Inventory of U.S. Greenhouse Gas Emissions and Sinks," and 2022/2023 values come from Rhodium.

 Hydropower contributes clean and renewable electricity generation and potential retirements could impact company, state, and federal emissions reductions pathways

Clean Capacity Additions Proceed at Aggressive Pace

But Current Pace May Be Insufficient to Reach U.S. Targets

FIGURE 4

Annual clean electricity capacity additions vs projections

GW net summer capacity vs. projection range from Energy Innovation, REPEAT Project, and Rhodium Group

Source: Rhodium Group/MIT-CEEPR Clean Investment Monitor, Energy Innovation, REPEAT Project

Includes nuclear, wind, solar, hydro, batteries

Hydropower Relicensing Process Is Extensive

- I7GW of existing hydropower is up for relicensing by 2035
- Relicensing and maintenance costs are increasing
- May involve up to 11 agencies
- Mean license time is 6.6 years, with minimum and maximum time ranging from 1.1 to 19.5 years and a standard deviation of 3.4 years
 - New licensing decisions are on average 2.6 years shorter than relicensing, in part because relicensing decisions generally have greater environmental complexity
- Licensing has a high fixed cost component and imposes a larger cost/kW on smaller projects
- Because generation continues during relicensing, lower risks for existing units

Source: An Examination of the Hydropower Licensing and Federal Authorization Process (nrel.gov)

NREL/ORNL Licensing Analysis Suggests Wide Range of Costs

- Analysis of 82 completed new license and relicensing process costs
- Strong relationship between project size and absolute licensing cost, though economies of scale improve cost per unit
- Total costs at given price point may vary and are uncertain at outset
- Median costs across all studied facilities: \$107/kW average cost: \$241/kW
 - Excluding new licenses Med: \$131/kW, Avg: \$281/kW

Figure 10. (a; left) Log-log scale scatterplots of reported licensing costs in 2019\$ and project generating capacity in kW. (b; right) The size-agnostic \$/kW metric and project generating capacity.

Note: The three high-cost outliers are circled in red in both plots; the low-cost/high \$/kW outlier is not visible on either plot (i.e., at 0.25 kW | \$5,400 | \$21,600/kW). Non-generating projects that reported licensing costs are also not shown.

Source: An Examination of the Hydropower Licensing and Federal Authorization Process (nrel.gov)

Small facilities face high costs/kW while large facilities have high absolute costs

Study Design

- Update historical capacity to reflect FERC licensing status
 - Characterize license types and expiration dates
 - Uses ORNL*, database of existing hydro capacity coupled with current (2023)
 FERC active license data to characterize license status
- Create scenarios to evaluate a range of futures for hydropower units
 - Separately consider federal (age) and non-federal (license status) fleet
- Evaluate the quantitative impacts of early retirement of hydro units on emissions, cost, and generation mix
- Understand value of existing hydropower to electric sector generation and decarbonization and system-level and emissions implications of retirement

*Source: Megan M. Johnson, Shih-Chieh Kao, and Rocio Uria-Martinez. 2023. Existing Hydropower Assets (EHA) Plant Database, 2023. HydroSource. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. https://doi.org/10.21951/EHA_FY2023/1972057

Investigate implications of hydropower relicensing and retirement on power system

Electric Generation

Detailed representation of:

- Energy and capacity requirements
- Renewable integration, transmission, storage
- State-level policies and constraints

Model Outputs:

Economic equilibrium for generation, capacity, and end-use mix

Emissions, air quality, and water

Energy Use

Detailed representation of:

- Customer heterogeneity across end-use sectors
- End-use technology trade-offs
- Electrification and efficiency opportunities

Documentation, articles, and reports available at https://esca.epri.com

US-REGEN Existing Hydro Capacity in 2020 (GW)

*Data taken from: Megan M. Johnson, Shih-Chieh Kao, and Rocio Uria-Martinez. 2023. Existing Hydropower Assets (EHA) Plant Database, 2023. HydroSource. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. https://doi.org/10.21951/EHA_FY2023/1972057

Cumulative Hydro Capacity Up For Retirement/Relicensing (MW)

Note: Non-federal retirement eligibility based on license type and status, while federal retirement eligibility based on age (>50 years). Represents potential modernization efforts

Hydro Capacity Up For Retirement/Relicensing (MW)

12

Scenario Mix

Scenarios	Relicensing/Retiring Decision/Economic Decision	Power Sector CO ₂ Target
Retire Reference	Retire all hydro plants that are up for retirement/relicensing by 2035	No CO ₂ target
Relicense Reference	Relicense all hydro plants that are up for retirement/relicensing by 2035	
Retire Non-Federal Reference	Retire non-federal fleet up for retirement/relicensing by 2035, leave federal fleet in operation	
Economic Decision Reference	Economic decision	
Retire CES35	Retire all hydro plants that are up for retirement/relicensing by 2035	100% clean
Relicense CES35	Relicense all hydro plants that are up for retirement/relicensing by 2035	electricity by
Retire Non-Federal CES35	Retire non-federal fleet up for retirement/relicensing by 2035, leave federal fleet in operation	2033
Economic Decision CES35	Economic decision	

Preliminary Findings (Indicative of Final Results)

- ITAGE INTERPORT INTERPO
 - Under current policy conditions, hydropower retirements could lead to higher electric sector emissions compared to retaining existing fleet
 - To meet load requirements, retired hydropower could be replaced by mostly gas generation
- With a net-zero CO₂ electric sector target in 2035, hydropower retirements may increase system costs relative to retaining the existing hydro generation
 - To meet load requirements, retired units could be replaced by a combination of wind, solar, and nuclear generation

Generation Changes (TWh)

Reference (No Carbon Target)

Retire All Relative to Relicense All Reference

CES35 (Power Sector Net-Zero by 2035)

Retire All Relative to Relicense All Reference

Capacity Difference between Relicensing and Retirement (GW)

Reference (No Carbon Target) Retire All Relative to Relicense All Reference 100 100 50 Solar Gas 0 Hydro -50 -100 2020 2025 2030 2035

Gas

CES35 (Power Sector Net-Zero by 2035)

Retire All Relative to Relicense All Reference

Electric Sector Emissions (GtCO₂)

- From year 2025 to year 2035, CO₂ emissions in the Retire | Reference scenario is 4% to 6% higher compared to Relicense | Reference.
- Emissions rebound effect may offset emissions reductions from clean energy deployment

CO₂ Emissions Relicense | Reference relative to Retire | Reference

Year	million ton CO ₂	Vehicle Equiv.* Million/yr
2025	72.3	17.2
2030	71.8	17.1
2035	54.95	13.1

*Using EPA GHG equivalence 2023 calculator

<u>i</u>				
	• ³ /4	ðð³⁄┰ = ¹ 3∕₄• ³∕Ĕ⁄╕ᠯ⁄┰ð¾	• ³ /##] ² /4-• ³ /Å/#]/# ð ³ /4	

System Costs (\$Billion)

- System cost is present value to year t.
- Total system costs vary by ~\$100b to 2035 from replacing hydropower
- Currently, there is no cost associated with the relicensing decision for hydro plants. Hence more scenarios are to be conducted to investigate the impacts on system costs from the relicensing/retirement decision.

For Discussion

- Relicensing costs range greatly across facility sizes and types
- Retirement and relicensing decisions require assessment of complex trade-offs between operational costs and revenue, direct relicensing costs, and indirect costs and benefits, and many systemic effects aren't visible on the margin
- Raises questions about feasibility of capacity additions to offset lost capacity while meeting load requirements and climate objectives
- Hydropower is concentrated regionally, and regional effects may be more pronounced than national averages

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved

Backup Slides

Capacity (GW) in Reference Scenarios (No Carbon Target)

Relicense | **Reference**

Retire | **Reference**

Capacity (GW) in CES35 Scenarios (Power Sector Net-Zero by 2035)

Relicense | CES35

Retire CES35

Generation (TWh) in Reference Scenarios (No Carbon Target)

Relicense | **Reference**

Retire | **Reference**

Generation (TWh) in CES35 Scenarios (Power Sector Net-Zero by 2035)

Relicense | CES35

Retire CES35

REGEN End-Use Model Level of Detail by Sector

Cars and Light Trucks	ICEV	Resider
cars and Eight Hacks	PHEV	Space Cooling
Bus and Passenger Rail	EV	Snace Heating
Aviation (domestic)	FCV	Weter Heating
Aviation (international)	Autonomous Vehicles	Clothes Dryers
Light Commercial Trucks		Cooking
Heavy Trucks		Lighting
Freight Rail (non-energy)		Other Appliances
Shipping (domestic)		Electronics
Shipping (international)		Ventilation
Military		Other Building
Fuel Transport (rail)		
Pipeline		

Residential and Commercial

FI 0 Ν

Commercial	Agriculture			
entral A/C	Construction			
/indow A/C	Mining (non-energy)			
ir-Source Heat Pump	Non-Building Commercial			
round-Source Heat Pump	Water Services			
ectric Furnace/Resistance as Furnace il/LPG Furnace /ood Furnace/Stove	Bulk ChemicalsIron and SteelPaper/Pulp/WoodFoodCementOther Manufacturing	Boilers Co-gen Boilers Process Heat Machine Drive Feedstocks Facilities		
	Refining Upstream Energy Extraction			

SECTORS / ACTIVITIES

END-USES

TECHNOLOGIES

Licensing Process Integrates Many Individual Factors

- Larger projects are more likely to have more complicated licensing processes but still correlate with lower costs per unit
 - Notable exception: Relicensing costs are higher, and correlate with larger units (fewer large facilities are new builds)
- Factors correlating with higher license costs
 - Inclusion of settlement agreement
 - Presence of endangered species
 - Require an Environmental Impact Statement
 - Fish passage guidelines
 - Associated with investor-owned utility (joint correlation with facility size)